term positive. To combine the terms, add or subtract all of the x2{displaystyle x^{2}}
terms, the x{displaystyle x}
3x2−11x−4=0{displaystyle 3x^{2}-11x-4=0}
求解二次方程步骤 2
步骤 2. 对表达式进行因子分解。
要对表达式进行因式分解,您必须使用 x2{displaystyle x^{2}}
term (3), and the factors of the constant term (-4), to make them multiply and then add up to the middle term, (-11). Here's how you do it:
Since 3x2{displaystyle 3x^{2}}
only has one set of possible factors, 3x{displaystyle 3x}
and x{displaystyle x}
, you can write those in the parenthesis: (3x±?)(x±?)=0{displaystyle (3x\pm ?)(x\pm ?)=0}
Then, use process of elimination to plug in the factors of 4 to find a combination that produces -11x when multiplied. You can either use a combination of 4 and 1, or 2 and 2, since both of those numbers multiply to get 4. Just remember that one of the terms should be negative, since the term is -4.
By trial and error, try out this combination of factors (3x+1)(x−4){displaystyle (3x+1)(x-4)}
. When you multiply them out, you get 3x2−12x+x−4{displaystyle 3x^{2}-12x+x-4}
. If you combine the terms −12x{displaystyle -12x}
and x{displaystyle x}
, you get −11x{displaystyle -11x}
, which is the middle term you were aiming for. You have just factored the quadratic equation.
As an example of trial and error, let's try checking a factoring combination for 3x2−11x−4=0{displaystyle 3x^{2}-11x-4=0}
that is an error (does not work): (3x−2)(x+2){displaystyle (3x-2)(x+2)}
= 3x2+6x−2x−4{displaystyle 3x^{2}+6x-2x-4}
. If you combine those terms, you get 3x2−4x−4{displaystyle 3x^{2}-4x-4}
. Though the factors -2 and 2 do multiply to make -4, the middle term does not work, because you needed to get −11x{displaystyle -11x}
, not −4x{displaystyle -4x}
求解二次方程第 3 步
步骤 3. 将每组括号设置为零作为单独的方程。
这将引导您找到 x{displaystyle x} 的两个值
that will make the entire equation equal to zero, (3x+1)(x−4){displaystyle (3x+1)(x-4)}
must be zero; so, either (3x + 1) or else (x - 4) must equal zero. So, you would write 3x+1=0{displaystyle 3x+1=0}
and alsox−4=0{displaystyle x-4=0}
求解二次方程第 4 步
步骤 4. 独立求解每个“归零”方程。
在二次方程中,x 有两个可能的值。通过隔离变量并写下 x 的两个解作为最终解,为 x 的每个可能值一一求出 x。以下是您的操作方法:
解决 3x + 1 = 0
3x = -1 ….. 通过减法
3x/3 = -1/3 ….. 除以
x = -1/3 ….. 简化
解决 x - 4 = 0
x = 4 ….. 通过减去
x = (-1/3, 4) ….. 通过制作一组可能的、单独的解决方案,这意味着 x = -1/3 或 x = 4 看起来不错。