轻松求二次函数最大值或最小值的 3 种方法

目录:

轻松求二次函数最大值或最小值的 3 种方法
轻松求二次函数最大值或最小值的 3 种方法
Anonim

由于各种原因,您可能需要能够定义所选二次函数的最大值或最小值。如果你的原始函数写成一般形式,你可以找到最大值或最小值, f(x)=ax2+bx+c{displaystyle f(x)=ax^{2}+bx+c}

, or in standard form, f(x)=a(x−h)2+k{displaystyle f(x)=a(x-h)^{2}+k}

. Finally, you may also wish to use some basic calculus to define the maximum or minimum of any quadratic function.

Steps

Method 1 of 3: Beginning with the General Form of the Function

轻松找到二次函数的最大值或最小值步骤 1
轻松找到二次函数的最大值或最小值步骤 1

步骤 1. 以通用形式设置功能。

二次函数是具有 x2{displaystyle x^{2}}

term. It may or may not contain an x{displaystyle x}

term without an exponent. There will be no exponents larger than 2. The general form is f(x)=ax2+bx+c{displaystyle f(x)=ax^{2}+bx+c}

. If necessary, combine similar terms and rearrange to set the function in this general form.

  • For example, suppose you start with f(x)=3x+2x−x2+3x2+4{displaystyle f(x)=3x+2x-x^{2}+3x^{2}+4}

    . Combine the x2{displaystyle x^{2}}

    terms and the x{displaystyle x}

    terms to get the following in general form:

    • f(x)=2x2+5x+4{displaystyle f(x)=2x^{2}+5x+4}

轻松找到二次函数的最大值或最小值步骤 2
轻松找到二次函数的最大值或最小值步骤 2

步骤 2. 确定图形的方向。

二次函数产生抛物线图。抛物线要么向上开口,要么向下开口。如果 a{displaystyle a}

, the coefficient of the x2{displaystyle x^{2}}

term, is positive, then the parabola opens upward. If a{displaystyle a}

is negative, then the parabola opens downward. Look at the following examples:

  • For f(x)=2x2+4x−6{displaystyle f(x)=2x^{2}+4x-6}

    , a=2{displaystyle a=2}

    so the parabola opens upward.

  • For f(x)=−3x2+2x+8{displaystyle f(x)=-3x^{2}+2x+8}

    , a=−3{displaystyle a=-3}

    so the parabola opens downward.

  • For f(x)=x2+6{displaystyle f(x)=x^{2}+6}

    , a=1{displaystyle a=1}

    so the parabola opens upward.

  • If the parabola opens upward, you will be finding its minimum value. If the parabola opens downward, you will find its maximum value.
轻松找到二次函数的最大值或最小值步骤 3
轻松找到二次函数的最大值或最小值步骤 3

步骤 3. 计算 -b/2a。

−b2a{displaystyle -{frac {b}{2a}}} 的值

tells you the x{displaystyle x}

value of the vertex of the parabola. When the quadratic function is written in its general form of ax2+bx+c{displaystyle ax^{2}+bx+c}

, use the coefficients of the x{displaystyle x}

and x2{displaystyle x^{2}}

terms as follows:

  • For a function f(x)=x2+10x−1{displaystyle f(x)=x^{2}+10x-1}

    , a=1{displaystyle a=1}

    and b=10{displaystyle b=10}

    . Therefore, find the x-value of the vertex as:

    • x=−b2a{displaystyle x=-{frac {b}{2a}}}

    • x=−10(2)(1){displaystyle x=-{frac {10}{(2)(1)}}}

    • x=−102{displaystyle x=-{frac {10}{2}}}

    • x=−5{displaystyle x=-5}

  • As a second example, consider the function f(x)=−3x2+6x−4{displaystyle f(x)=-3x^{2}+6x-4}

    . In this example, a=−3{displaystyle a=-3}

    and b=6{displaystyle b=6}

    . Therefore, find the x-value of the vertex as:

    • x=−b2a{displaystyle x=-{frac {b}{2a}}}

    • x=−6(2)(−3){displaystyle x=-{frac {6}{(2)(-3)}}}

    • x=−6−6{displaystyle x=-{frac {6}{-6}}}

    • x=−(−1){displaystyle x=-(-1)}

    • x=1{displaystyle x=1}

轻松找到二次函数的最大值或最小值步骤 4
轻松找到二次函数的最大值或最小值步骤 4

步骤 4. 找到相应的 f(x) 值。

将刚才计算的x的值插入到函数中,求出f(x)对应的值。这将是函数的最小值或最大值。

  • 对于上面的第一个例子, f(x)=x2+10x−1{displaystyle f(x)=x^{2}+10x-1}

    , you calculated the x-value for the vertex to be x=−5{displaystyle x=-5}

    . Enter −5{displaystyle -5}

    in place of x{displaystyle x}

    in the function to find the maximum value:

    • f(x)=x2+10x−1{displaystyle f(x)=x^{2}+10x-1}

    • f(−5)=(−5)2+10(−5)−1{displaystyle f(-5)=(-5)^{2}+10(-5)-1}

    • f(−5)=25−50−1{displaystyle f(-5)=25-50-1}

    • f(−5)=−26{displaystyle f(-5)=-26}

  • For the second example above, f(x)=−3x2+6x−4{displaystyle f(x)=-3x^{2}+6x-4}

    , you found the vertex to be at x=1{displaystyle x=1}

    . Insert 1{displaystyle 1}

    in place of x{displaystyle x}

    in the function to find the maximum value:

    • f(x)=−3x2+6x−4{displaystyle f(x)=-3x^{2}+6x-4}

    • f(1)=−3(1)2+6(1)−4{displaystyle f(1)=-3(1)^{2}+6(1)-4}

    • f(1)=−3+6−4{displaystyle f(1)=-3+6-4}

    • f(1)=−1{displaystyle f(1)=-1}

轻松找到二次函数的最大值或最小值 步骤 5
轻松找到二次函数的最大值或最小值 步骤 5

步骤 5. 报告您的结果。

回顾你被问到的问题。如果你被要求提供顶点的坐标,你需要同时报告 x{displaystyle x}

and y{displaystyle y}

(or f(x){displaystyle f(x)}

) values. If you are only asked for the maximum or minimum, you only need to report the y{displaystyle y}

(or f(x){displaystyle f(x)}

) value. Refer back to the value of the a{displaystyle a}

coefficient to be sure if you have a maximum or a minimum.

  • For the first example, f(x)=x2+10x−1{displaystyle f(x)=x^{2}+10x-1}

    , the value of a{displaystyle a}

    is positive, so you will be reporting the minimum value. The vertex is at (−5, −26){displaystyle (-5, -26)}

    , and the minimum value is −26{displaystyle -26}

  • For the second example, f(x)=−3x2+6x−4{displaystyle f(x)=-3x^{2}+6x-4}

    , the value of a{displaystyle a}

    is negative, so you will be reporting the maximum value. The vertex is at (1, −1){displaystyle (1, -1)}

    , and the maximum value is −1{displaystyle -1}

Method 2 of 3: Using the Standard or Vertex Form

轻松找到二次函数的最大值或最小值步骤 6
轻松找到二次函数的最大值或最小值步骤 6

步骤 1. 以标准或顶点形式编写二次函数。

一般二次函数的标准形式,也可以称为顶点形式,如下所示:

  • f(x)=a(x−h)2+k{displaystyle f(x)=a(x-h)^{2}+k}

  • If your function is already given to you in this form, you just need to recognize the variables a{displaystyle a}

    , h{displaystyle h}

    and k{displaystyle k}

    . If your function begins in the general form f(x)=ax2+bx+c{displaystyle f(x)=ax^{2}+bx+c}

    , you will need to complete the square to rewrite it in vertex form.

  • To review how to complete the square, see Complete the Square.
轻松找到二次函数的最大值或最小值步骤 7
轻松找到二次函数的最大值或最小值步骤 7

步骤 2. 确定图形的方向。

就像用一般形式写成的二次函数一样,你可以通过查看系数 a{displaystyle a} 来判断抛物线的方向

. If a{displaystyle a}

in this standard form is positive, then the parabola opens upward. If a{displaystyle a}

is negative, then the parabola opens downward. Look at the following examples:

  • For f(x)=2(x+1)2−4{displaystyle f(x)=2(x+1)^{2}-4}

    , a=2{displaystyle a=2}

    , which is positive, so the parabola opens upward.

  • For f(x)=−3(x−2)2+2{displaystyle f(x)=-3(x-2)^{2}+2}

    , a=−3{displaystyle a=-3}

    , which is negative, so the parabola opens downward.

  • If the parabola opens upward, you will be finding its minimum value. If the parabola opens downward, you will find its maximum value.
轻松找到二次函数的最大值或最小值步骤 8
轻松找到二次函数的最大值或最小值步骤 8

步骤 3. 确定最小值或最大值。

当函数以标准形式编写时,找到最小值或最大值就像说明变量 k{displaystyle k} 的值一样简单

. For the two example functions given above, these values are:

  • For f(x)=2(x+1)2−4{displaystyle f(x)=2(x+1)^{2}-4}

    , k=−4{displaystyle k=-4}

    . This is the minimum value of the function because this parabola opens upward.

  • For f(x)=−3(x−2)2+2{displaystyle f(x)=-3(x-2)^{2}+2}

    , k=2{displaystyle k=2}

    . This is the maximum value of the function, because this parabola opens downward.

轻松找到二次函数的最大值或最小值 步骤 9
轻松找到二次函数的最大值或最小值 步骤 9

步骤 4. 找到顶点。

如果询问最小值或最大值的坐标,点将是 (h, k){displaystyle (h, k)}

. Note, however, that in the standard form of the equation, the term inside the parentheses is (x−h){displaystyle (x-h)}

, so you need the opposite sign of the number that follows the x{displaystyle x}

  • For f(x)=2(x+1)2−4{displaystyle f(x)=2(x+1)^{2}-4}

    , the term inside the parentheses is (x+1), which can be rewritten as (x-(-1)). Thus, h=−1{displaystyle h=-1}

    . Therefore, the coordinates of the vertex for this function are (−1, −4){displaystyle (-1, -4)}

  • For f(x)=−3(x−2)2+2{displaystyle f(x)=-3(x-2)^{2}+2}

    , the term inside the parentheses is (x-2). Therefore, h=2{displaystyle h=2}

    . The coordinates of the vertex are (2, 2).

Method 3 of 3: Using Calculus to Derive the Minimum or Maximum

轻松找到二次函数的最大值或最小值步骤 10
轻松找到二次函数的最大值或最小值步骤 10

步骤 1. 从一般表格开始。

将二次函数写成一般形式, f(x)=ax2+bx+c{displaystyle f(x)=ax^{2}+bx+c}

. If necessary, you may need to combine like terms and rearrange to get the proper form.

  • Begin with the sample function f(x)=2x2−4x+1{displaystyle f(x)=2x^{2}-4x+1}

轻松找到二次函数的最大值或最小值步骤 11
轻松找到二次函数的最大值或最小值步骤 11

步骤 2. 使用幂律求一阶导数。

使用基本的一年级微积分,您可以找到一般二次函数的一阶导数为 f′(x)=2ax+b{displaystyle f^{prime }(x)=2ax+b}

  • For the sample function f(x)=2x2−4x+1{displaystyle f(x)=2x^{2}-4x+1}

    , find the derivative as:

    • f′(x)=4x−4{displaystyle f^{prime }(x)=4x-4}

轻松找到二次函数的最大值或最小值步骤 12
轻松找到二次函数的最大值或最小值步骤 12

步骤 3. 将导数设置为零。

回想一下,函数的导数告诉您函数在所选点处的斜率。当斜率为零时,函数的最小值或最大值出现。因此,要找到最小值或最大值出现的位置,请将导数设置为零。继续上面的示例问题:

  • f′(x)=4x−4{displaystyle f^{prime }(x)=4x-4}

  • 0=4x−4{displaystyle 0=4x-4}

轻松找到二次函数的最大值或最小值步骤 13
轻松找到二次函数的最大值或最小值步骤 13

步骤 4. 求解 x。

当导数为零时,使用代数的基本规则重新排列函数并求解 x 的值。此解决方案将告诉您函数顶点的 x 坐标,即最大值或最小值出现的位置。

  • 0=4x−4{displaystyle 0=4x-4}

  • 4=4x{displaystyle 4=4x}

  • 1=x{displaystyle 1=x}

轻松找到二次函数的最大值或最小值步骤 14
轻松找到二次函数的最大值或最小值步骤 14

步骤 5. 将 x 的求解值插入到原始函数中。

函数的最小值或最大值将是 f(x){displaystyle f(x)}

at the selected x{displaystyle x}

position. Insert your value of x{displaystyle x}

into the original function and solve to find the minimum or maximum.

  • For the function f(x)=2x2−4x+1{displaystyle f(x)=2x^{2}-4x+1}

    at x=1{displaystyle x=1}

    • f(1)=2(1)2−4(1)+1{displaystyle f(1)=2(1)^{2}-4(1)+1}

    • f(1)=2−4+1{displaystyle f(1)=2-4+1}

    • f(1)=−1{displaystyle f(1)=-1}

轻松找到二次函数的最大值或最小值步骤 15
轻松找到二次函数的最大值或最小值步骤 15

步骤 6. 报告您的解决方案。

该解决方案为您提供了最大或最小点的顶点。对于这个示例函数, f(x)=2x2−4x+1{displaystyle f(x)=2x^{2}-4x+1}

, the vertex occurs at (1, −1){displaystyle (1, -1)}

. The coefficient a{displaystyle a}

is positive, so the function opens upward. Therefore, the minimum value of the function is the y-coordinate of the vertex, which is −1{displaystyle -1}

-1 /></p>
<p>.</p></p>
<h2>视频 - 通过使用此服务,某些信息可能会与 YouTube 共享。</h2></p>
<iframe 源代码=

提示

受主题流行